Effect of Ginger and Turmeric Against Cadmium Induced Hepato-Renal Toxicity in Albino Rats
By: Hafiza Sajda Ashraf (2012-VA-578) | Ms.Asma Waris.
Contributor(s): Dr. Muhammad Tayyab | Dr. Sehrish Firyal.
Material type: BookPublisher: 2014Description: 113p.Subject(s): Department of BiochemistryDDC classification: 2199,T Dissertation note: Metal compounds and metal is natural elements of all ecosystems, moving between biosphere, hydrosphere, atmosphere and lithosphere. Metal complexes are increasingly introduced in the environment and could finally accumulate in a/biotic systems (Florea et al. 2005). Contact to heavy metals is potentially damaging particularly for those metal compounds, which do not contain any physiological function in the metabolism of cells. A heavy metal is a part of an ill-defined subset of constituents that show metallic properties, which would mostly include the some metalliods, actinides, lanthanides and transition metals. Heavy metals have a high density and atomic weight much greater at least 5 times than water. Anthropogenic basis of heavy metals, i.e. contamination, have been introduced to the ecosystem waste-derived fuels are particularly prone to have heavy metals. More than 20 heavy metals, but inorganic arsenic, lead and cadmium are of particular concern (Gornal 1949). Although, carcinogenic and toxic effects of metals have been observed in animals and humans, and that these metals form a key part in the normal functioning of biological cells. Some necessary transition metals like manganese, iron, zinc and copper contribute in controlling a variety of signaling and metabolic pathways. On the other hand their redox properties and coordination chemistry gave them an additional advantage that these metals might escape from the control mechanism such that homeostasis, partitioning, transport and binding to the designated cell elements and they interrelate with protein sites other than those which are tailor- made for them by displacing other metals from their natural binding sites. While, this process does not take place regularly, but the toxicity of metals can lead to impairment and dysfunctioning of cells (Leonard et al. 2004). Oxidative stress is one of the main mechanisms of heavy metal toxicity. These metals are able to interact with DNA causing oxidative worsening of biological macromolecules and nuclear protein (Chen et al. 2001). Metals like mercury, iron, cadmium, lead, copper and nickel, have the capability to produce reactive radicals, leading to cell damage like damage to lipid bilayer, depletion of enzyme activities and DNA (Stohs 1995). Moreover, these reactive radical species comprise a broad diversity of sulfur-, oxygen, nitrogen- and carbon radicals, initiating not only from lipid peroxides, hydrogen peroxide and superoxide radical but also in chelates of proteins complex peptide and amino acid, with the toxic metals. Metals produce reactive species, which in turn can cause nephrotoxicity, hepatotoxicity and neurotoxicity in humans and animals (Chen and Sthos 1995). Cadmium is a natural metal located in the Periodic Table of the elements between mercury and zinc and the chemical behavior of cadmium is like a Zn. There is usually a divalent cation, complexd through other constituents (e.g CdCl2). Cadmium in the soil crust around 0.1ppm (Hans 1995) frequently being found as a contaminant in Pb or Zn deposits. In Zn or Pb smelting cadmium produced as a by product. Commercially, Cd is used in batteries, galvanizing steel, lasers, ink color, television screens, cosmetics and was used as an obstacle in nuclear fission and zinc to weld seals in water pipes made of lead before 1960. In the United States, approximately 600 metric tons are produced annually and about 150 tons are imported (US 2012). Contact of Cd in human occurs mainly through ingestion or inhalation. Absorption through the skin contact is negligible. Intestinal absorption of cadmium is greater in individuals with zinc, calcium or iron deficiency (Nordberg et al. 2007). The main source of cadmium exposure in human is considered to be the cigarette smoking (Friberg et al. 1983). Cd levels in blood and kidney are consistently elevated in smokers than nonsmokers. Inhalation exposure due to industry can be major occupational settings for example, soldering or welding and can cause a severe chemical pneumonitis (Nordberg et al 2007). Exposure to cadmium from getting unhygienic food (eg, shellfish, leafy vegetables, rice regions of Japan and China and organ meats,) or water (either the old tap closed Zn / CD or a long-term industrial pollution) and can produce long-term effects on health (Abernethy et al. 2010). After absorption, Cd is transported all over the body, often linked to a sulfhydryl group of protein such as metallothionein and about 30% deposits in the kidneys and 30% in the livers, and the rest scattered throughout the body (Argonne et al 2001). Half life of cadmium in the blood was estimated 75 to 128 days. (Jarup et al 1983). As a result urine, blood and hair Cd levels are poor substitutes for body burden and primarily reflect current contact; it is also true with the other heavy metals. Urine provocation test will require the estimation of cadmium in the body (Bernhoft et al. 2012). The toxicity of cadmium has been shown in parts of body, cadmium induces tissue damage by creation of oxidative stress (Matovic et al. 2011; Patra et al. 2011; Cuypers et al. 2010) epigenetic changes in DNA expression (Wang et al. 2012; Martinez et al. 2011; Luparello 2012) mainly in the proximal segment of the renal tubule S1 (Vesay et al. 2010) inhibition or up regulation of transport routes (Therenod et al. 2012; Wan et al. 2012; Vankerkhove 2012). Other pathologic mechanisms comprise competition disruption of the physiologic effects of Mg or Zn (Abdulla et al. 1989; Moulis et al. 2010; Shukla et al. 1984), destruction of mitochondrial function and inhibition of heme synthesis (Schauder et al. 2010), and potentially inducing apoptosis (Cannino et al. 2009). Glutathione reduction is observed, as structural deformation of proteins due sulfhydryl groups bind to the cadmium (Valko et al. 2005). Moreover, these effects are amplified by contact with other toxic metals such as As and Pb (Whittaker et al. 2011) and may be ameliorated by Se or Zn and by factors increasing levels of Nrf2 (Wang et al. 2012; Kcwill 2012). Medicinal plants are plants having inherent active components used to treat disease or relieve pain (Okigboet et al. 2008). In most developing countries traditional medicines and medicinal plants are used as healing agents for the maintenance of good physical condition (UNESCO 1996) and in developing countries 80% of the peoples relies on traditional medicines, usually herbal remedies, for their prime health care needs (Schmincke et al. 2003). Plants extracts and their products are used in medicines as herbal remedies and they are being used to cure diverse infections (Arekemase et al. 2011). Moreover, there has been an increased concern in the beneficial potential of medicinal plants or plant products containing antioxidant properties in plummeting free radical induced tissue injury (Gupta & Flora 2005). Plants make a vital contribution to health care. The medicinal properties of plants could be based on the antimicrobial, antipyretic, antioxidant, effects of the phytochemicals in them (Cowman 1999; Adesokan et al. 2008). Natural antioxidants also in the form of crude extracts or their chemical ingredient are very efficient in retarding the devastating processes create by oxidative stress (Zengin et al. 2011) and the toxicity analysis of the majority of the medicinal plants are not yet fully appreciated it is usually accepted that drugs which are derivative of plant products are safer than their imitative counterparts (Oluyemi 2007). Ginger (Zingiber officinale), is a part of the Zingiberaceae family, is a eminent spice used in your daily diet (Demin et al. 2010) and also utilized for the traditional treatment of several infirmities (Afzal et al 2001). Major components of ginger like shogaol, gingerol, diarylheptanoids and volatile oil, work as antioxidant, anti-diabetic, analgesic, antipyretic, anti-inflammatory, anti-lipid and anti-tumor (Penna et al. 2003; Kadnur et al. 2005; Islamr et al. 2008; Shim et al. 2011; Kim 2008; Wangw et al. 2009). Latest scientific research has exposed that ginger has many therapeutic such as anti-oxidant effects, a capability to restrain the formation of inflammatory complexs and direct anti-inflammatory effects (Thomson et al. 2002). Ginger extract have antioxidative features, since it can scavenge hydroxyl radicals and superoxide anion. Z. officinale was found to slow down the activity of peroxidation and lipoxygenase (Topic et al. 2002). Another, frequently used spice of Zingiberaceae: ‘curcuma longa’ (turmeric) has shown its strong intrinsic activity as a healing agent for several ailments. The active ingerdient of turmeric is the Curcumin that (Curcuma langalinn) shows antioxidant property. It is a yellow coloured phenolic pigment yield from the turmeric rhizomes (family Zingiberaceae).The most significant characteristic of curcumin is that it has no side consequences, regardless of the therapeutic agent in a number of useful purposes. It acts as a scavenger of free radicals (Khanna et al. 1999). Curcumin is considered to be an efficient antioxidant against oxidative tissue damage. It can considerably restrain the generation of reactive oxygen species (Joe et al. 1994) Moreover, curcumin is considered to be a powerful inhibitor tumour cells proliferation (Joe et al. 2004) a powerful cancer chemopreventive agent (Duvoix et al. 2005; Aggarwal et al. 2005) an dexhibits anti carcinogenic, anti-infective and anti viral properties (Araujo et al. 2001).Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Thesis | UVAS Library Thesis Section | Veterinary Science | 2199,T (Browse shelf) | Available | 2199,T |
Metal compounds and metal is natural elements of all ecosystems, moving between biosphere, hydrosphere, atmosphere and lithosphere. Metal complexes are increasingly introduced in the environment and could finally accumulate in a/biotic systems (Florea et al. 2005).
Contact to heavy metals is potentially damaging particularly for those metal compounds, which do not contain any physiological function in the metabolism of cells. A heavy metal is a part of an ill-defined subset of constituents that show metallic properties, which would mostly include the some metalliods, actinides, lanthanides and transition metals. Heavy metals have a high density and atomic weight much greater at least 5 times than water. Anthropogenic basis of heavy metals, i.e. contamination, have been introduced to the ecosystem waste-derived fuels are particularly prone to have heavy metals. More than 20 heavy metals, but inorganic arsenic, lead and cadmium are of particular concern (Gornal 1949).
Although, carcinogenic and toxic effects of metals have been observed in animals and humans, and that these metals form a key part in the normal functioning of biological cells. Some necessary transition metals like manganese, iron, zinc and copper contribute in controlling a variety of signaling and metabolic pathways. On the other hand their redox properties and coordination chemistry gave them an additional advantage that these metals might escape from the control mechanism such that homeostasis, partitioning, transport and binding to the designated cell elements and they interrelate with protein sites other than those which are tailor- made for them by displacing other metals from their natural binding sites. While, this process does not take place regularly, but the toxicity of metals can lead to impairment and dysfunctioning of cells (Leonard et al. 2004).
Oxidative stress is one of the main mechanisms of heavy metal toxicity. These metals are able to interact with DNA causing oxidative worsening of biological macromolecules and nuclear protein (Chen et al. 2001).
Metals like mercury, iron, cadmium, lead, copper and nickel, have the capability to produce reactive radicals, leading to cell damage like damage to lipid bilayer, depletion of enzyme activities and DNA (Stohs 1995). Moreover, these reactive radical species comprise a broad diversity of sulfur-, oxygen, nitrogen- and carbon radicals, initiating not only from lipid peroxides, hydrogen peroxide and superoxide radical but also in chelates of proteins complex peptide and amino acid, with the toxic metals. Metals produce reactive species, which in turn can cause nephrotoxicity, hepatotoxicity and neurotoxicity in humans and animals (Chen and Sthos 1995).
Cadmium is a natural metal located in the Periodic Table of the elements between mercury and zinc and the chemical behavior of cadmium is like a Zn. There is usually a divalent cation, complexd through other constituents (e.g CdCl2). Cadmium in the soil crust around 0.1ppm (Hans 1995) frequently being found as a contaminant in Pb or Zn deposits. In Zn or Pb smelting cadmium produced as a by product. Commercially, Cd is used in batteries, galvanizing steel, lasers, ink color, television screens, cosmetics and was used as an obstacle in nuclear fission and zinc to weld seals in water pipes made of lead before 1960. In the United States, approximately 600 metric tons are produced annually and about 150 tons are imported (US 2012).
Contact of Cd in human occurs mainly through ingestion or inhalation. Absorption through the skin contact is negligible. Intestinal absorption of cadmium is greater in individuals with zinc, calcium or iron deficiency (Nordberg et al. 2007).
The main source of cadmium exposure in human is considered to be the cigarette smoking (Friberg et al. 1983). Cd levels in blood and kidney are consistently elevated in smokers than nonsmokers. Inhalation exposure due to industry can be major occupational settings for example, soldering or welding and can cause a severe chemical pneumonitis (Nordberg et al 2007).
Exposure to cadmium from getting unhygienic food (eg, shellfish, leafy vegetables, rice regions of Japan and China and organ meats,) or water (either the old tap closed Zn / CD or a long-term industrial pollution) and can produce long-term effects on health (Abernethy et al. 2010).
After absorption, Cd is transported all over the body, often linked to a sulfhydryl group of protein such as metallothionein and about 30% deposits in the kidneys and 30% in the livers, and the rest scattered throughout the body (Argonne et al 2001). Half life of cadmium in the blood was estimated 75 to 128 days. (Jarup et al 1983). As a result urine, blood and hair Cd levels are poor substitutes for body burden and primarily reflect current contact; it is also true with the other heavy metals. Urine provocation test will require the estimation of cadmium in the body (Bernhoft et al. 2012).
The toxicity of cadmium has been shown in parts of body, cadmium induces tissue damage by creation of oxidative stress (Matovic et al. 2011; Patra et al. 2011; Cuypers et al. 2010) epigenetic changes in DNA expression (Wang et al. 2012; Martinez et al. 2011; Luparello 2012) mainly in the proximal segment of the renal tubule S1 (Vesay et al. 2010) inhibition or up regulation of transport routes (Therenod et al. 2012; Wan et al. 2012; Vankerkhove 2012).
Other pathologic mechanisms comprise competition disruption of the physiologic effects of Mg or Zn (Abdulla et al. 1989; Moulis et al. 2010; Shukla et al. 1984), destruction of mitochondrial function and inhibition of heme synthesis (Schauder et al. 2010), and potentially inducing apoptosis (Cannino et al. 2009). Glutathione reduction is observed, as structural deformation of proteins due sulfhydryl groups bind to the cadmium (Valko et al. 2005). Moreover, these effects are amplified by contact with other toxic metals such as As and Pb (Whittaker et al. 2011) and may be ameliorated by Se or Zn and by factors increasing levels of Nrf2 (Wang et al. 2012; Kcwill 2012).
Medicinal plants are plants having inherent active components used to treat disease or relieve pain (Okigboet et al. 2008). In most developing countries traditional medicines and medicinal plants are used as healing agents for the maintenance of good physical condition (UNESCO 1996) and in developing countries 80% of the peoples relies on traditional medicines, usually herbal remedies, for their prime health care needs (Schmincke et al. 2003). Plants extracts and their products are used in medicines as herbal remedies and they are being used to cure diverse infections (Arekemase et al. 2011). Moreover, there has been an increased concern in the beneficial potential of medicinal plants or plant products containing antioxidant properties in plummeting free radical induced tissue injury (Gupta & Flora 2005). Plants make a vital contribution to health care. The medicinal properties of plants could be based on the antimicrobial, antipyretic, antioxidant, effects of the phytochemicals in them (Cowman 1999; Adesokan et al. 2008).
Natural antioxidants also in the form of crude extracts or their chemical ingredient are very efficient in retarding the devastating processes create by oxidative stress (Zengin et al. 2011) and the toxicity analysis of the majority of the medicinal plants are not yet fully appreciated it is usually accepted that drugs which are derivative of plant products are safer than their imitative counterparts (Oluyemi 2007).
Ginger (Zingiber officinale), is a part of the Zingiberaceae family, is a eminent spice used in your daily diet (Demin et al. 2010) and also utilized for the traditional treatment of several infirmities (Afzal et al 2001). Major components of ginger like shogaol, gingerol, diarylheptanoids and volatile oil, work as antioxidant, anti-diabetic, analgesic, antipyretic, anti-inflammatory, anti-lipid and anti-tumor (Penna et al. 2003; Kadnur et al. 2005; Islamr et al. 2008; Shim et al. 2011; Kim 2008; Wangw et al. 2009). Latest scientific research has exposed that ginger has many therapeutic such as anti-oxidant effects, a capability to restrain the formation of inflammatory complexs and direct anti-inflammatory effects (Thomson et al. 2002). Ginger extract have antioxidative features, since it can scavenge hydroxyl radicals and superoxide anion. Z. officinale was found to slow down the activity of peroxidation and lipoxygenase (Topic et al. 2002).
Another, frequently used spice of Zingiberaceae: ‘curcuma longa’ (turmeric) has shown its strong intrinsic activity as a healing agent for several ailments. The active ingerdient of turmeric is the Curcumin that (Curcuma langalinn) shows antioxidant property. It is a yellow coloured phenolic pigment yield from the turmeric rhizomes (family Zingiberaceae).The most significant characteristic of curcumin is that it has no side consequences, regardless of the therapeutic agent in a number of useful purposes. It acts as a scavenger of free radicals (Khanna et al. 1999). Curcumin is considered to be an efficient antioxidant against oxidative tissue damage. It can considerably restrain the generation of reactive oxygen species (Joe et al. 1994) Moreover, curcumin is considered to be a powerful inhibitor tumour cells proliferation (Joe et al. 2004) a powerful cancer chemopreventive agent (Duvoix et al. 2005; Aggarwal et al. 2005) an dexhibits anti carcinogenic, anti-infective and anti viral properties (Araujo et al. 2001).
There are no comments for this item.