Antiviral Effect Of Human Saliva Against Avian Influenza Virus Strain H9n2
By: Maryam Riaz (2008-VA-340) | Prof. Dr. Tahir Yaqub.
Contributor(s): Dr. Sehrish Firyal | Prof. Dr. Kamran Ashraf.
Material type: BookPublisher: 2015Description: 55p.Subject(s): Department of Molecular Biology and BiotechnologyDDC classification: 2336-T Dissertation note: Saliva is an important body fluid that contains a complex array of proteins, peptides and various substances that help in maintaining the health of the oral cavity. Saliva exhibits a broad-spectrum of antiviral activity against enveloped viruses as it disrupts the viral membrane. Influenza is a common virus that has been diagnosed in humans and avian species due to AIV. This study has demonstrated the naturally occurring antiviral activity of human saliva against the H9N2 influenza virus that serves as a serious threat to poultry and has been shown to possess high zoonotic potential which can cause a new pandemic. In this study saliva samples from healthy individuals were taken and the natural antiviral ability of saliva was observed against AIV (Pk-UDL/01/08 H9N2) of calculated EID50 106.66. Inoculum prepared from saliva and H9N2 virus was injected in 9 days old embryonated eggs using CAS route and incubated at 37°C for 48 hours. A negative control (only saliva) and positive control (only virus inoculum) was also determined in the current study. The antiviral activity of saliva was observed through haemagglutination test. The HA test of harvested fluid showed that human saliva indeed possesses antiviral activity against H9N2 virus and can be used as a natural antiviral agent in medicine. Furthermore, the genomic DNA was extracted from the blood samples. HTN3 gene responsible for histatin production, was amplified using gene specific oligonucleotides. The obtained HTN3 gene sequences were analyzed using Chromas software. The sequence alignment showed 99% similarity to the available sequences in NCBI database and 100% similarity to each individual sample. To conclude, this study has demonstrated that human saliva possesses antiviral activity against H9N2 virus. The nucleotide sequence analysis from each sample CHAPTER 6 SUMMARY Summary 47 showed no particular change which shows that antiviral activity of glycoproteins present in saliva does not vary at a genetic level. This innate antiviral activity can open a new frontier when it comes to combating viral infections that have grown resistant to conventional drugs in both human and animal subjects.Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Thesis | UVAS Library Thesis Section | Veterinary Science | 2336-T (Browse shelf) | Available | 2336-T |
Saliva is an important body fluid that contains a complex array of proteins, peptides and various substances that help in maintaining the health of the oral cavity. Saliva exhibits a broad-spectrum of antiviral activity against enveloped viruses as it disrupts the viral membrane. Influenza is a common virus that has been diagnosed in humans and avian species due to AIV. This study has demonstrated the naturally occurring antiviral activity of human saliva against the H9N2 influenza virus that serves as a serious threat to poultry and has been shown to possess high zoonotic potential which can cause a new pandemic.
In this study saliva samples from healthy individuals were taken and the natural antiviral ability of saliva was observed against AIV (Pk-UDL/01/08 H9N2) of calculated EID50 106.66. Inoculum prepared from saliva and H9N2 virus was injected in 9 days old embryonated eggs using CAS route and incubated at 37°C for 48 hours. A negative control (only saliva) and positive control (only virus inoculum) was also determined in the current study. The antiviral activity of saliva was observed through haemagglutination test. The HA test of harvested fluid showed that human saliva indeed possesses antiviral activity against H9N2 virus and can be used as a natural antiviral agent in medicine.
Furthermore, the genomic DNA was extracted from the blood samples. HTN3 gene responsible for histatin production, was amplified using gene specific oligonucleotides. The obtained HTN3 gene sequences were analyzed using Chromas software. The sequence alignment showed 99% similarity to the available sequences in NCBI database and 100% similarity to each individual sample. To conclude, this study has demonstrated that human saliva possesses antiviral activity against H9N2 virus. The nucleotide sequence analysis from each sample
CHAPTER 6
SUMMARY
Summary
47
showed no particular change which shows that antiviral activity of glycoproteins present in saliva does not vary at a genetic level. This innate antiviral activity can open a new frontier when it comes to combating viral infections that have grown resistant to conventional drugs in both human and animal subjects.
There are no comments for this item.