Mutational Analysis Of Hcv Gene Encoding E1 Glycoprotein
By: Muhammad Saad Junjua (2013-VA-893) | Dr. Muhammad Imran.
Contributor(s): Dr. Wasim Shehzad | Dr. Abu Saeed Hashmi.
Material type: BookPublisher: 2015Description: 74p.Subject(s): Department of Molecular Biology and BiotechnologyDDC classification: 2399-T Dissertation note: Hepatitis C virus (HCV) is a positive single stranded RNA virus that belongs to Flaviviridae family and causes liver related issues like hepatocellular carcinoma, cirrhosis and chronic liver disease. HCV is affecting people worldwide; more than 170 million peoples have been affected so far and the number is increasing day by day. Its prevalence in Pakistan is about 3% to 6%. There is lot of variation in its genome and it is classified into 6 major genotypes and these genotypes are further classified into many subtypes. Size of HCV is about 9500 bps which only encodes single polyprotein. This 3000 to 3300 amino acids polyprotein is processed by cellular and viral proteases to generate 10 polypeptides consisting of 4 structural (Core, E1, E2 and P7) and 6 non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The most immunogenic gene from all the genes is E1. It involves in the interaction with the host cell and easily escapes from the immune system of host due to the presence of hypervariable regions in E1 gene. To isolate the E1 gene, RNA extraction was done using the kit method. RNA was converted to cDNA which was then amplified in two rounds of PCR using nested primers from HCV core region. After confirming the presence of HCV RNA in serum samples, PCR amplification of HCV E1 gene was carried out using gene specific nested primers. Amplified E1 gene products were Sanger sequenced and aligned with standard sequence to find out genetic variations. E1 gene sequences were converted to protein sequences for which secondary protein structures were made and analyzed. No noticeable change was seen in these secondary protein structures. The protein sequences were also analyzed for the presence of B-cell and T-cell epitopes; two T-cell epitopes (QAFTFRPRR, FLVGQAFTF) were found which may inform the development of a proper vaccine against HCV.Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Thesis | UVAS Library Thesis Section | Veterinary Science | 2399-T (Browse shelf) | Available | 2399-T |
Hepatitis C virus (HCV) is a positive single stranded RNA virus that belongs to Flaviviridae family and causes liver related issues like hepatocellular carcinoma, cirrhosis and chronic liver disease. HCV is affecting people worldwide; more than 170 million peoples have been affected so far and the number is increasing day by day. Its prevalence in Pakistan is about 3% to 6%. There is lot of variation in its genome and it is classified into 6 major genotypes and these genotypes are further classified into many subtypes. Size of HCV is about 9500 bps which only encodes single polyprotein. This 3000 to 3300 amino acids polyprotein is processed by cellular and viral proteases to generate 10 polypeptides consisting of 4 structural (Core, E1, E2 and P7) and 6 non-structural proteins (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The most immunogenic gene from all the genes is E1. It involves in the interaction with the host cell and easily escapes from the immune system of host due to the presence of hypervariable regions in E1 gene.
To isolate the E1 gene, RNA extraction was done using the kit method. RNA was converted to cDNA which was then amplified in two rounds of PCR using nested primers from HCV core region. After confirming the presence of HCV RNA in serum samples, PCR amplification of HCV E1 gene was carried out using gene specific nested primers. Amplified E1 gene products were Sanger sequenced and aligned with standard sequence to find out genetic variations. E1 gene sequences were converted to protein sequences for which secondary protein structures were made and analyzed. No noticeable change was seen in these secondary protein structures. The protein sequences were also analyzed for the presence of B-cell and T-cell epitopes; two T-cell epitopes (QAFTFRPRR, FLVGQAFTF) were found which may inform the development of a proper vaccine against HCV.
There are no comments for this item.