Molecular Exploration Of Zbed6 Gene For Growth Trait In Lohi Sheep
By: Usman Sagheer (2014-VA-03) | Dr. Maryam Javed.
Contributor(s): Dr. Akhtar Ali | Prof. Dr. Tahir Yaqub.
Material type: BookPublisher: 2016Description: 62p.Subject(s): Molecular Biology and Biotechnology | IBBTDDC classification: 2539-T Dissertation note: ZBED6 gene is a central transcription factor. It is as a repressor of IGF2 (insulin-like growth factor II) interpretation in skeletal muscle myogenesis and development. It is essentially included in organism development, signaling, cell to cell collaboration, hepatic fibrosis, clathrin intervened endocytosis and tight intersection signaling falls. Chromatin immune precipitation (ChIP) sequencing utilizing C2C12 cells recognized around 2,500 ZBED6 binding locations in the genome, and the derived accord theme gave an immaculate match with the set up tying site in IGF2. Silencing of ZBED6 in myoblast cells influences IGF2 expression, wound healing, cell proliferation and myotube arrangement. Genes connected with ZBED6 binding sites demonstrated a very huge advancement for certain Gene Ontology groupings, including improvement and transcriptional regulation. Forty two blood samples were collected. DNA extraction was done by using organic extraction method. Primers for PCR amplification designed using Primer3 software. PCR products were sequenced and then analyzed by using BioEdit software. Expasy translational tool for translation and POPGENE 32 software for analysis of population genetics at all the loci were used. Using this software the overall allele frequency, heterozygosity, probability using Chi-square test and Likelihood ratio test and Hardy-Weinberg equilibrium, genotype distribution at all SNP position, summary of genetic variation statistics for all loci and association were calculated. After this, for the association one way ANOVA was performed. Single nucleotide polymorphism within ZBED6 could be potential candidate gene to be serving as genetic marker for the selection of animals with higher tendencies towards weight gain.Item type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
Thesis | UVAS Library Thesis Section | Veterinary Science | 2539-T (Browse shelf) | Available | 2539-T |
ZBED6 gene is a central transcription factor. It is as a repressor of IGF2 (insulin-like growth factor II) interpretation in skeletal muscle myogenesis and development. It is essentially included in organism development, signaling, cell to cell collaboration, hepatic fibrosis, clathrin intervened endocytosis and tight intersection signaling falls. Chromatin immune precipitation (ChIP) sequencing utilizing C2C12 cells recognized around 2,500 ZBED6 binding locations in the genome, and the derived accord theme gave an immaculate match with the set up tying site in IGF2. Silencing of ZBED6 in myoblast cells influences IGF2 expression, wound healing, cell proliferation and myotube arrangement. Genes connected with ZBED6 binding sites demonstrated a very huge advancement for certain Gene Ontology groupings, including improvement and transcriptional regulation.
Forty two blood samples were collected. DNA extraction was done by using organic extraction method. Primers for PCR amplification designed using Primer3 software. PCR products were sequenced and then analyzed by using BioEdit software. Expasy translational tool for translation and POPGENE 32 software for analysis of population genetics at all the loci were used. Using this software the overall allele frequency, heterozygosity, probability using Chi-square test and Likelihood ratio test and Hardy-Weinberg equilibrium, genotype distribution at all SNP position, summary of genetic variation statistics for all loci and association were calculated. After this, for the association one way ANOVA was performed. Single nucleotide polymorphism within ZBED6 could be potential candidate gene to be serving as genetic marker for the selection of animals with higher tendencies towards weight gain.
There are no comments for this item.